Multi-Level Iteration Methods for Solving Integral Equations of the Second Kind
نویسندگان
چکیده
منابع مشابه
VARIATIONAL ITERATION METHOD FOR FREDHOLM INTEGRAL EQUATIONS OF THE SECOND KIND
In this paper, He‘s variational iteration method is applied to Fredholm integral equations of the second kind. To illustrate the ability and simplicity of the method, some examples are provided. The results reveal that the proposed method is very effective and simple and for first fourth examples leads to the exact solution.
متن کاملDegenerate kernel approximation method for solving Hammerstein system of Fredholm integral equations of the second kind
Degenerate kernel approximation method is generalized to solve Hammerstein system of Fredholm integral equations of the second kind. This method approximates the system of integral equations by constructing degenerate kernel approximations and then the problem is reduced to the solution of a system of algebraic equations. Convergence analysis is investigated and on some test problems, the propo...
متن کاملThe modified degenerate kernel method for the multi-dimensional Fredholm integral equations of the second kind
In this paper, to investigate the multi-dimensional Fredholm integral equations of the second kind a modified degenerate kernel method is used. To construct the mentioned modified, the source function is approximated by the same method which employed to obtain a degenerate approximation of the kernel. The Lagrange interpolation method is used to make the needed approximations. The error and ...
متن کاملApplication of Chebyshev Polynomials for Solving Abel's Integral Equations of the First and Second Kind
In this paper, a numerical implementation of an expansion method is developed for solving Abel's integral equations of the first and second kind. The solution of such equations may demonstrate a singular behaviour in the neighbourhood of the initial point of the interval ofintegration. The suggested method is based on the use of Taylor series expansion to overcome the singularity which le...
متن کاملExpansion methods for solving integral equations with multiple time lags using Bernstein polynomial of the second kind
In this paper, the Bernstein polynomials are used to approximate the solutions of linear integral equations with multiple time lags (IEMTL) through expansion methods (collocation method, partition method, Galerkin method). The method is discussed in detail and illustrated by solving some numerical examples. Comparison between the exact and approximated results obtained from these methods is car...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Integral Equations and Applications
سال: 2002
ISSN: 0897-3962
DOI: 10.1216/jiea/1181074928